Surface modification processes leading to large debris accumulations in high-relief mountain areas are important for understanding landscape evolution, especially in some of Earth’s most active orogens. The Arroumd rock avalanche at the foot of the NW face of Mount Aksoual (3912 m above sea level [masl]) in the Jebel Toubkal area of the High Atlas, Morocco, represents one of the largest mass movement landforms in North Africa. The age and origin of this extensive feature have been contested for over a century. Late Pleistocene moraines are also present in the same valley, adjacent to the avalanche debris. The mean of six 10Be cosmogenic exposure ages shows that a series of catastrophic rock slope failures occurred at 4.5 ± 0.5 ka, while a set of eight exposure ages from two of the three mapped moraines has a far larger spread from 1.5 to 7.5 ka. This suggests that the avalanche events were effective agents in modifying the true surface exposure age of the Pleistocene moraines in the Arroumd valley. This has resulted in similar mean 10Be apparent exposure ages for the preexisting Late Pleistocene moraine surfaces and Holocene catastrophic rock slope failures. Similar rock avalanche deposits are present in other glaciated valleys in the High Atlas. We conclude that the trigger for collapse was seismic activity related to proximity of the major Tizi n’Test fault. These findings have important implications for interpreting and dating glacial landforms in tectonically active settings.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.