Terrestrial cosmogenic nuclides, produced by secondary cosmic-ray interactions in the atmosphere and in situ within minerals in the shallow lithosphere, are widely used to date surface exposure of rocks and sediments, to estimate erosion and weathering rates, and to date sediment deposition or burial. Their use has transformed geomorphology and Quaternary geology, for the first time allowing landforms to be dated and denudation rates to be measured over soil-forming time scales. The application of cosmogenic nuclides to geology began soon after the invention of accelerator mass spectrometry (AMS) in 1977 and increased dramatically with the measurement of in situ–produced nuclides in mineral grains near Earth’s surface in the 1980s. The past 25 yr have witnessed the development of cosmogenic nuclides from their initial detection to their prevalence today as a standard geochronological and geochemical tool. This review covers the major developments of the past 25 yr by comparing the state of the field in 1988 with that of today, and by identifying key advances in that period that moved the field forward. We emphasize the most commonly used in situ–produced nuclides measured by AMS for geological applications, but we also discuss other nuclides where their applications overlap. Our review covers AMS instrumentation, cosmogenic nuclide production rates, the methods of surface exposure dating, measurement of erosion and weathering, and burial dating, and meteoric 10Be.

—In memoriam: Devendra Lal (1929–2012), whose vision inspired the field.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.