New U-Pb isotope-dilution–thermal ionization mass spectrometry (ID-TIMS) ages (371–305 Ma) for 30 granitic plutons along the New Zealand sector of the East Gondwanan active margin reveal a highly episodic emplacement history and crustal growth pattern. The Late Devonian–late Carboniferous ages also establish specific links with both the mostly older, Lachlan and the mostly younger, New England fold belts of eastern Australia. Dated plutons are representative of two S- and I-type suite pairs, the volumetrically predominant Karamea-Paringa (371–360 Ma) and minor Ridge-Tobin (355–342 Ma) pulses, as well as sporadic Foulwind Suite A-type granites (350–305 Ma). Emplacement of the bulk of the dominant ~3400 km2 Karamea Suite S-type granite-granodiorite plutons within a 2.1 Ma interval is explained by major and intimate intrusion of mantle-derived magma into largely metasedimentary crust during intra-arc extension of previously overthickened crust. Transient emplacement rates were thus of similar magnitude as some young ignimbrite flare-ups and an order of magnitude greater than long-term averages for Mesozoic-Cenozoic cordilleran batholiths of the western Americas. Extension likely was terminated abruptly by resumption of convergence, possibly associated with amalgamation of the Buller and Takaka terranes, between 368 and 355 Ma. Significant crustal growth occurred during generation of the two S-type suites, where mantle basalt contributed mass, and heat for rapid melting, during transient intra- or backarc extensional episodes. In contrast, the I-type suites were dominated by partial melting of meta-igneous crust, and they are relatively small in volume. The Karamea S-type suite shares striking similarities in terms of age, composition, and extensional tectonic setting with S-type granites of the Melbourne terrane of the Lachlan fold belt. Both regions may have formed in a backarc position with respect to the Late Devonian–early Carboniferous subduction zone in the New England fold belt. Foulwind Suite A-type magmatism in New Zealand overlaps in age with the widespread 320–285 Ma A- and I-type magmatism in the northern New England fold belt. The likely continuation of the New England subduction system must have subsequently been removed from outboard of the New Zealand region after 320–285 Ma magmatism, and prior to Triassic accretion of a Permian oceanic arc terrane to the New Zealand margin.

You do not currently have access to this article.