Abstract

Combined U-Pb zircon, Rb-Sr, 40Ar/39Ar laser-fusion, and conventional K-Ar geochronology establish a late Early Cretaceous age for the Delfonte volcanic rocks. U-Pb zircon analyses define a lower intercept age of 100.5 ± 2 Ma that is interpreted as the crystallization age of the Delfonte sequence. Argon studies document both xenocrystic contamination and postemplacement Ar loss. Rb-Sr results from mafic lavas at the base of the sequence demonstrate compositionally correlated variations in initial 87Sr/86Sr ratios (Sri) from 0.706 for basalts to 0.716 for andesitic compositions. This covariation indicates substantial mixing of subcontinental lithosphere with Proterozoic upper crust. Correlations between Rb/Sr and Sri may result not only in pseudoisochrons approaching the age of the crustal component, but also in reasonable but incorrect apparent ages approaching the true age.

Ages obtained in this study require that at least some of the thrust faulting in the Mescal Range-Clark Mountain portion of the foreland fold-and-thrust belt occurred later than ca. 100 Ma and was broadly contemporaneous with emplacement of the Keystone thrust plate in the Spring Mountains to the northeast. Comparison of the age and Rb-Sr systematics of ash-flow tuff boulders in the synorogenic Lavinia Wash sequence near Goodsprings, Nevada, with those of the Delfonte volcanic rocks supports a Delfonte source for the boulders. The 99 Ma age of the Lavinia Wash sequence is nearly identical to the Delfonte age, requiring rapid erosion, transport, and deposition following Delfonte volcanism.

First Page Preview

First page PDF preview
You do not currently have access to this article.