The Cordillera of Canada and Alaska is a type example of an accretionary orogen, but the origin of some terranes remains contentious (e.g., Stikinia of British Columbia and Yukon, Canada). Presented herein are igneous and detrital zircon U/Pb-Hf and trace-element data, as well as the first radiolarian ages from the Asitka Group, the basement to eastern Stikinia. The data are used to evaluate the role of juvenile and ancient crust in the evolution of Stikinia and the tectonic environment of magmatism. Two rhyolites are dated by U-Pb zircon at 288.64 ± 0.21 Ma and 293.89 ± 0.31 Ma, with εHf(t) = +10. Red chert contains radiolarians that are correlated with P. scalprata m. rhombothoracata + Ruzhencevispongus uralicus assemblages (Artinskian–Kungurian). Detrital zircon U/Pb-Hf from a rare Asitka Group sandstone have a mode at ca. 320 Ma and εHf(t) +10 to +16; the detrital zircon suite includes five Paleoproterozoic zircons (~5% of the population). Detrital zircons from a stratigraphically overlying Hazelton Group (Telkwa Formation) volcanic sandstone indicate deposition at ca. 196 Ma with zircon εHf(t) that are on a crustal evolution line anchored from the Asitka Group.

Zircon trace-element data indicate that the Carboniferous detrital zircons formed in an ocean arc environment. The Proterozoic detrital zircons were derived from a peripheral landmass, but there is no zircon εHf(t) evidence that such a landmass played any role in the magmatic evolution of eastern Stikinia. The data support that eastern Stikinia formed on Paleozoic ocean floor during the Carboniferous to early Permian. Consistent with previous fossil modeling, zircon statistical comparisons demonstrate that Stikinia and Wrangellia were related terranes during the Carboniferous to Permian, and they evolved separately from Yukon-Tanana terrane and cratonic North America.

Gold Open Access: This paper is published under the terms of the CC-BY-NC license.
This content is PDF only. Please click on the PDF icon to access.