Detrital K-feldspar 40Ar/39Ar thermochronology was conducted on clastic sedimentary rock samples collected from northern exposures of the Upper Cretaceous Nanaimo Group on Vancouver Island and adjacent Gulf Islands of British Columbia to constrain the denudation history of the local Coast Mountains batholith source region and determine the origin of extraregional sediment supplied to the basin. Strata of the northern Nanaimo Group deposited between 86 and 83 Ma (Comox and Extension formations) exhibit a 130–85 Ma age distribution of detrital K-feldspar 40Ar/39Ar ages that lack age maxima. These are interpreted to have been sourced from the southwestern Coast Mountains batholith. Younger strata deposited between 83 and 72 Ma (Cedar District and De Courcy formations) yield a broader age range (150–85 Ma) with an age maximum near the depositional age. These results indicate focused denudation of deeper-seated rocks east of the Harrison Lake fault. The youngest units deposited after 72 Ma (Geoffrey, Spray, and Gabriola formations) primarily yield younger than 75 Ma detrital K-feldspar ages with pronounced age maxima near the depositional age. This sediment was sourced extraregionally relative to the Coast Mountains batholith.

We sought to constrain the origin of the extra-regional sediment by measuring the thermal histories of 74 samples of basement rocks from throughout the Pacific Northwest, and by compiling a database of over 2400 biotite 40Ar/39Ar and K/Ar cooling ages from predominantly Cretaceous batholiths along the western North American margin. This analysis focused upon two previously proposed source regions: the Idaho batholith and the Mojave-Salina margin of southern California. The Nanaimo detrital K-feldspar 40Ar/39Ar age distributions favor the peraluminous Late Cretaceous Idaho batholith and its Proterozoic Belt-Purcell Supergroup sedimentary wall rock as the more likely source of the extraregional sediment and disfavor the Baja–British Columbia hypothesis for 2000–4000-km-scale translation of rocks along the margin during the Late Cretaceous.

Gold Open Access: This paper is published under the terms of the CC-BY-NC license.
This content is PDF only. Please click on the PDF icon to access.