The Rio Grande rift hosts a remarkable record of Quaternary river incision preserved in an alluvial terrace sequence that has been studied for more than a century. However, our understanding of Rio Grande incision history in central New Mexico since the end of basin filling ca. 0.78 Ma remains hampered by poor age control. Robust correlations among Rio Grande terrace sequences in central and southern New Mexico are lacking, making it difficult to address important process-related ques­tions about terrace formation in continental-scale river systems. We present new age controls using a combination of 40Ar/39Ar, 36Cl surface-exposure, and 14C dating techniques from alluvial deposits in the central New Mexico Socorro area to document the late Quaternary incision history of the Rio Grande. These new age controls (1) provide con­straints to establish a firm foundation for Socorro basin terrace stratigraphy, (2) allow terrace correla­tions within the rift basin, and (3) enable testing of alternative models of terrace formation. We identified and mapped a high geomorphic surface interpreted to represent the end of basin filling in the Socorro area and five distinct, post–Santa Fe Group (ca. 0.78 Ma) alloformations and associ­ated geomorphic surfaces using photogrammetric methods, soil characterization, and stratigraphic descriptions. Terrace deposits exhibit tread heights up to 70 m above the valley floor and are 5 to >30 m thick. Their fills generally have pebble-to-cobble bases overlain by fine-to-pebbly sand and local thin silt and clay tops. Alluvial-fan terraces and associ­ated geomorphic surfaces grade to former valley levels defined by axial terrace treads. Carbon-14 ages from detrital charcoal above and below a buried tributary terrace tread show that the most recent aggradation event persisted until ca. 3 ka during the transition from glacial to modern climate conditions. Drill-log data show widespread valley fill ~30 m thick that began aggrading after glacial retreat in northern New Mexico and southern Colorado (ca. 14 ka). Aggradation during this transition was likely due to hillslope destabilization, increased sediment yield, decreased runoff, and reduced stream competence. Chlorine-36 ages imply similar controls on earlier terraces that have surface ages of ca. 27–29, 64–70, and 135 ka, and suggest net incision during glacial expansions when increased runoff favored down-cutting and bedload mobilization. Our terrace chronology supports existing climate-response models of arid environments and links tributary responses to the axial Rio Grande system throughout the central Rio Grande rift. The terrace chronology also reflects a transition from modest (60 m/m.y.) to rapid (300 m/m.y.) incision between 610 and 135 ka, similar to patterns observed throughout the Rio Grande rift and the western United States in general.

Gold Open Access: This paper is published under the terms of the CC-BY-NC license.
This content is PDF only. Please click on the PDF icon to access.