The timing of deformation and deposition within syntectonic basins provides critical information for understanding the evolution of strain in mountain belts. In the U.S. Cordillera, contractional deformation was partitioned between the Sevier thrust belt in Utah and several structural provinces in the hinterland in Nevada. One hinterland province, the Central Nevada thrust belt (CNTB), accommodated up to ~15 km of shortening; however, in most places, this deformation can only be bracketed between Permian and Eocene. Cretaceous deposits of the Newark Canyon Formation (NCF), which are sparsely exposed along the length of the CNTB, offer the opportunity to constrain deformation timing. Here, we present mapping and U-Pb zircon geochronology from the NCF in the Diamond Mountains, which demonstrate deposition of the NCF during proximal CNTB deformation. Deposition of the basal NCF member was under way no earlier than ca. 114 Ma, a tuff in the middle part of the section was deposited at ca. 103 Ma, and the youngest member was deposited no earlier than ca. 99 Ma. Intraformational angular unconformities and abrupt along- and across-strike thickness changes indicate that NCF deposition was related to growth of an east-vergent fault-propagation fold. Clast compositions define unroofing of upper Paleozoic sedimentary rocks, which we interpret as the progressive erosion of an anticline ~10 km to the west. CNTB deformation was contemporaneous with shortening in the Sevier thrust belt, which defines middle Cretaceous strain partitioning between frontal and interior components of the Cordillera. Strain partitioning may have been promoted by renewed underthrusting during a period of high-flux magmatism.

Gold Open Access: This paper is published under the terms of the CC-BY-NC license.
This content is PDF only. Please click on the PDF icon to access.

Supplementary data