The Sesia zone in the Italian Western Alps is a piece of continental crust that has been subducted to eclogite-facies conditions and records a complex metamorphic history. The exact timing of events and the significance of geochronological information are debated due to the interplay of tectonic, metamorphic, and metasomatic processes. Here we present new geochronological data using Rb-Sr internal mineral isochrons and in situ 40Ar/39Ar laser ablation data to provide constraints on the relative importance of fluid-mediated mineral replacement reactions and diffusion for the interpretation of radiogenic isotope signatures, and on the use of these isotopic systems for dating metamorphic and variably deformed rocks. Our study focuses on the shear zone at the contact between two major lithological units of the Sesia zone, the eclogitic micaschists and the gneiss minuti.

Metasedimentary rocks of the eclogitic micaschists unit contain phengite with step-like zoning in major element chemistry as evidence for petrologic disequilibrium. Distinct 40Ar/39Ar spot ages of relict phengite cores and overprinted rims demonstrate the preservation of individual age domains in the crystals. The eclogitic micaschists also show systematic Sr isotope disequilibria among different phengite populations, so that minimum ages of relict assemblage crystallization can be differentiated from the timing of late increments of deformation. The preservation of these disequilibrium features shows the lack of diffusive re-equilibration and underpins that fluid-assisted dissolution and recrystallization reactions are the main factors controlling the isotope record in these subduction-related metamorphic rocks.

Blueschist-facies mylonites record deformation along the major shear zone that separates the eclogitic micaschists from the gneiss minuti. Two Rb-Sr isochrones that comprise several white mica fractions and glaucophane constrain the timing of this deformation and accompanying near-complete blueschist-facies re-equilibration of the Rb-Sr system to 60.1 ± 0.9 Ma and 60.9 ± 2.1 Ma, respectively. Overlapping ages in eclogitic micaschists of 60.1 ± 1.1 (Rb-Sr isochron of sheared matrix assemblage), 58.6 ± 0.8, and 60.9 ± 0.4 Ma (white mica 40Ar/39Ar inverse isochron ages) support the significance of this age and show that fluid-rock interaction and partial re-equilibration occurred as much as several kilometers away from the shear zone. An earlier equilibration during high-pressure conditions in the eclogitic micaschists is recorded in minimum Rb-Sr ages for relict assemblages (77.2 ± 0.8 and 72.4 ± 1.1 Ma) and an 40Ar/39Ar inverse isochron age of 75.4 ± 0.8 Ma for white mica cores, again demonstrating that the two isotope systems provide mutually supporting geochronological information. Local reactivation and recrystallization along the shear zone lasted >15 m.y., as late increments of deformation are recorded in a greenschist-facies mylonite by a Rb-Sr isochron age of 46.5 ± 0.7 Ma.

Gold Open Access: This paper is published under the terms of the CC-BY-NC license.

Supplementary data