We use tectonic subsidence patterns from wells and stratigraphic sections to describe the mid-Miocene to present tectonic subsidence history of the Rio Grande rift. Tectonic subsidence and therefore rift opening were quite fast until ca. 8 Ma, with net subsidence rates (∼25–65 mm/k.y.) comparable to those of the prerupture phase of rifted continental margins. The rapid subsidence was followed by a late Miocene–early Pliocene unconformity that developed mainly along the flanks of most rift basins. The age of its associated lacuna is spatially variable but falls within 8–3 Ma (mostly 7–5 Ma) and thus is synchronous with eastward tilting of the western Great Plains (ca. 6–4 Ma). Tectonic subsidence rates either remained similar or decreased after the Miocene-Pliocene unconformity. North of 35°N, our analysis of geoid-to-elevation ratios suggests that, at present, topography of the Rio Grande rift region is compensated by a component of mantle-driven dynamic uplift. Previous work has indicated that this dynamic uplift is caused by focused vertical flow in the upper mantle resulting from slab descent and fragmentation of the Farallon slab, and Rio Grande rift opening, which affected the Rio Grande rift area beginning in the late Miocene. The spatial distribution and timing of the unconformity, as well as eastward tilting of the western Great Plains, can be explained by this dynamic mantle uplift, with contributions from variations in rift opening tectonics and climate. The focused mantle upwelling is not associated with increased rift opening rates.

Gold Open Access: This paper is published under the terms of the CC-BY-NC license.