
ABSTRACT

New apatite (U-Th)/He from the north-
eastern margin of the Tibetan Plateau (north 
Qilian Shan) indicate rapid cooling began at 
~10 Ma, which is attributed to the onset of 
faulting and topographic growth. Preserva-
tion of the paleo-PRZ in the hanging wall and 
growth strata in the footwall allow us to cal-
culate vertical and horizontal fault slip rates 
averaged over the last 10 Myr of ~0.5 mm/yr 
and ~1 mm/yr respectively, which are within 
a factor of two consistent with Holocene slip 
rates and geodetic data. Low fault slip rates 
since the initiation of the northern Qilian 
Shan fault suggest that total horizontal off-
set did not exceed 10 km. Further, emergence 
of the northern Qilian Shan occurs during 
a period of increased aridity in northern 
Tibet but is associated with only a minor 
expansion of the northern plateau perime-
ter, which is well established near collision 
time. Outgrowth of the northern Qilian Shan 
at ~10 Ma could be simple propagation of 
the larger Qilian Shan system, occurring in 
response to decreased slip rates on the Altyn 
Tagh fault or as a result of the change in GPE 
of the central plateau.

INTRODUCTION

The large size and youthfulness of the Tibetan 
orogen make it a prime location to study topo-
graphic growth, erosion and the effect of topog-
raphy on climate. Mountain range exhumation 
histories and lithologic changes in basin stratig-
raphy in northeastern Tibet have been used as a 
proxy for the development of high mean eleva-
tions. However, pre-Cenozoic cooling ages from 
exhumed fault blocks and lack of precise age 
data in basin deposits make linkages between 
orogenesis, exhumation/sedimentation, and cli-
mate tentative (e.g., Metivier et al., 1998; Zheng 
et al., 2000; Jolivet et al., 2001; Fang et al., 2003).

The Qilian Shan lies along the northeast-
ern margin of the Tibetan Plateau—a location 
where the initial timing of plateau growth is 
poorly known (Fig. 1). Thrust faulting in the 
Qilian Shan has been linked to crustal thicken-
ing and topographic growth, as well as to the 
accommodation of motion of the Altyn Tagh 
fault by the transfer of left-lateral strike-slip 
motion to oblique thrusting (Burchfi el et al., 
1989; Peltzer et al., 1989; Meyer et al., 1998; 
Tapponnier et al., 1990). Previous suggestions 
for the onset time of Qilian Shan deforma-
tion, including that of the North Qaidam ter-
rane, range from Paleocene to Pliocene time 
(Dupont-Nivet et al. 2004; Horton et al., 2004; 
Jolivet et al., 2001; Yin et al., 2002, 2008; 

George et al., 2001; Wang et al., 2004; Fang 
et al., 2004; Metivier et al., 1998). Analysis 
of Cenozoic stratigraphy in the western Hexi 
Corridor and adjacent north Qilian Shan range 
identifi es facies changes in Miocene time 
related to range growth (Bovet et al., 2009). 
Growth strata within the dated section of the 
Niugetao Formation (~9 Ma) of the Jiuxi Basin 
(central Hexi Corridor) suggests fault activ-
ity of the North Qilian Shan thrust during late 
Miocene time (Fang et al., 2004), but does not 
constrain fault initiation or range growth. Cool-
ing histories from fault bounded range blocks 
are well-suited for determining the initiation of 
faulting; however, previous apatite fi ssion-track 
and 40Ar/39Ar dating in hanging wall rocks have 
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been unsuccessful in directly dating the onset of 
rapid cooling related to erosional exhumation 
of the range because with exception of a single 
sample, cooling ages are Mesozoic, which sug-
gests that exhumation in response to Cenozoic 
thrust and reverse faulting has been insuffi cient 
to exhume completely reset ages (< 4–6 km) 
(Jolivet et al., 2001; George et al., 2001).

Apatite helium ages have a lower closure 
temperature than thermochronometric tech-
niques previously applied in the Qilian Shan, 
and so potentially record a thermal history 
related to fault-induced erosional exhumation. 
Further, we discuss how the preservation of the 
paleo-partial retention zone (PRZ) for helium 
diffusion in hanging wall rocks can be utilized 
as a passive marker to determine subsequent 
fault motion. When syn-tectonic sediments are 
preserved in the footwall, the paleo-PRZ can 
be used to measure long-term geologic offsets 
where the appropriate stratigraphic markers in 
the hanging wall are absent, which is a com-
mon structural limitation in basement-cored 
structures (Clark and Bilham, 2008). Thus in 
circumstances where erosion is limited to a few 
kilometers, apatite helium ages provide con-
straints on both the initiation of faulting and 
fault offset, and Myr scale faulting rates can be 
determined.

GEOLOGIC SETTING AND 
SAMPLING STRATEGY

The Cenozoic tectonics of the Qilian Shan 
and adjacent Hexi Corridor are characterized 
by folding, thrust faulting, and strike-slip fault-
ing that partially accommodate modern India-
Eurasia  plate convergence (Tapponnier et al., 
1990; Yuan et al., 2004). Geodetic shortening 
rates are 5.5 (±1.5) mm/yr (Zhang et al., 2004) 
between the Qaidam and Alashan blocks, and 
active shortening deformation to the south is 
distributed throughout the ~270 km wide Qilian  
Shan plateau (Institute of Geology, 1993; 
Metivier et al., 1998; Yuan et al., 2004). The 
northernmost structure of the Qilian Shan, the 
North Qilian Shan Thrust, juxtaposes low-grade 
metamorphic lower Paleozoic rocks (slates, 
phyllites, limestones, volcanic, and granitic 
rocks) over Cenozoic sedimentary rocks in the 
Hexi Corridor basin (Gansu Geological Bureau, 
1989; Fang et al., 2004).

The North Qilian Shan Thrust has formed a 
2–3 km topographic escarpment above the Hexi 
Corridor basin. A coarsening-upward succes-
sion of lacustrine-fl uvial deposits 2000–3000 m 
thick is preserved within the basin (Gansu Geo-
logical Bureau, 1989; Fang et al., 2004) and is 
dated to be mid-Oligocene to Quaternary depo-
sitional age based on paleontology (Bally et al., 

1986; Wang and Coward, 1993) and magneto-
stratigraphy (Fang et al., 2004).

We dated 12 samples for (U-Th)/He thermo-
chronometry that were collected from Paleozoic 
granites in the hanging wall of the North Qilian 
Shan Thrust (Fig. 1). Nine samples were col-
lected on a ~1100 m vertical transect within a 
single pluton. These samples are used to iden-
tify changes in erosion rate that may be related 
to fault motion. Three additional samples were 
collected 100–200 km along strike to the east 
(Fig. 1). Although the density of sampling to the 
east is not great enough to determine if propa-
gation of erosion occurred along strike of the 
fault, these samples provide some indication of 
how erosion magnitude may vary spatially and 
thus how regional a particular erosion history 
may be. Samples were analyzed for single-grain 
apatite (U-Th)/He ages using standard proce-
dures at Caltech (Farley and Stockli, 2002), and 
sample mean ages are reported as the average of 
3 or 4 individual grain analyses (Supplemental 
Tables 11 and 22).

RESULTS

Apatite helium ages indicate the time at 
which the sample cooled through its closure 
isotherm or ~60 °C for this sample suite based 
on a radiation damage model for He diffusion 
kinetics (Farley, 2002; Shuster et al., 2006). 
Helium ages on the vertical transect increase 
with elevation with a distinct change in the 
apparent exhumation rate at ~2700 m. Below 
2700 m elevation, analyses defi ne a steep age/
elevation gradient with an increase from 7.2 to 
9.5 Ma. Above 2700 m analyses defi ne a shal-
low age/elevation gradient, with ages increasing 
from 9.5 to 106 Ma and a pronounced change in 
age/elevation gradient at ~9.5 Ma (Fig. 2). Three 
samples collected ~200 km southeast of the ver-
tical transect are shown on the same plot (gray) 
and yield Mesozoic ages at high elevation but 
younger ages at low elevations compared to the 
vertical transect (Fig. 2; Supplemental Table 1 
[see footnote 1]). While these off-transect sam-
ples are too few to constrain a robust change 
in age/elevation gradient at a second location, 
these ages are generally consistent with a simi-
lar exhumation history along strike of the fault.

INTERPRETATION OF HELIUM AGES: 
TIMING OF FAULT INITIATION AND 
FAULT SLIP RATE

In a compressional tectonic setting, an abrupt 
increase in apparent exhumation rate on an age/
elevation plot typically signals accelerated ero-
sion most likely related to the upward motion of 
the hanging wall over the footwall (e.g., Wagner 
and Reimer, 1972; Wagner et al., 1977; Fitz-
gerald et al. 1995; Stockli et al., 2000; Reiners 
and Brandon, 2006). Ages that predate this tran-
sition defi ne the base of the fossil helium partial 
retention zone prior to rapid exhumation, i.e., 
the “lower break in slope” on an age/elevation 
diagram and can therefore be used to reconstruct 
the relative elevation of the land surface prior 
to faulting (Clark and Bilham, 2008). Such a 
reconstruction provides a marker horizon in the 
hanging wall that can be used to determine rela-
tive motion across the fault and is particularly 
useful in geologic settings where stratigraphic 
markers are absent in the hanging wall. Because 
non-vertical pathways of rocks can complicate 
quantitative interpretation of erosion rate from 
age/elevation information alone (e.g., Hunting-
ton et al., 2007), we focus only on timing of 
abrupt change in apparent erosion rate. As 
described below, we derive fault slip rates from 
offset markers across the fault and initiation age 
of faulting, not from the apparent erosion rate 
recorded by age/elevation data.

Timing of Fault Motion

An abrupt increase in erosion rate in the hang-
ing wall of a thrust or reverse fault likely signals 
fault activity and enhanced erosion at that time. 
The attribution of increased erosion rate to fault 
activity may be invalid if climate conditions 
caused enhanced erosion of pre-existing topog-
raphy or delayed erosion following fault motion 
to a climate period of greater erosivity. How-
ever, ~9 Ma growth strata found at the base of 
the Niugetao Fm. in the Hexi Corridor represent 
the initiation of deposition related to fault motion 
(Yang et al., 2007; Fang et al., 2004) (Fig. 1). 
The correlation of growth strata with an increase 
in exhumation rate is strong evidence of syn-
chronous fault motion and accelerated erosion.

Regional climate conditions were also 
unlikely to have caused the erosion signal we 
observe at ~10 Ma. Isotopic and lithostrati-
graphic evidence from basins across northern 
Tibet suggests arid conditions began in Oligo-
cene time and is attributed to the retreat of the 
Paratethys epicontinental sea, global climate 
changes, or the early rise of mountain ranges 
in northern Tibet, which block moisture from 
the south and east (Wang et al., 2003; Graham 

  1Supplemental Table 1. Excel fi le of sample loca-
tion and summary age data. If you are viewing the 
PDF of this paper or reading it offl ine, please visit 
http://dx.doi.org/10.1130/GES00523.S1 or the full-
text article on www.gsapubs.org to view Supplemen-
tal Table 1.

2Supplemental Table 2. Excel fi le of (U-Th)/He 
replicate analyses. If you are viewing the PDF of this 
paper  or reading it offl ine, please visit http://dx.doi.org/
10.1130/GES00523.S2 or the full-text article on 
www.gsapubs.org to view Supplemental Table 2.
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et al., 2005; Dupont-Nivet et al., 2006). Climate 
proxies from Linxia Basin in northeastern Tibet 
suggest an increase in aridity at 12–13 Ma with 
the period of greatest aridity occurring between 
9.6 and 8.5 Ma (Dettman et al., 2003; Fan et al., 
2007). A Neogene increase in δ18O values from 
sediments in the Tarim and Qaidam Basins may 
also represent a regional shift to more arid con-
ditions (Kent-Corson et al., 2009), correlative 
with an increase in dust deposition in the North 
Pacifi c and an increase in loess deposition 
within northern China at 7–8 Ma (Rea et al., 
1998; Sun et al., 1998).

Decreased precipitation would likely cause a 
decrease in climatically driven erosion rates, so 
climatic forcing at ca. 10 Ma is not likely to be the 
cause of the exhumation rate increase indicated 
by our data. Given the presence of synchronous 
growth strata and evidence for a lack of climate 
forcing, we attribute the increase in exhumation 
rate at ca. 10 Ma to fault initiation and the likely 
generation of steep topography of the northern-
most escarpment of the modern Tibetan Plateau. 
Helium ages are 2–3 Myr younger at low eleva-
tions east of the vertical transect, which suggests 
that either faulting initiated a few million years 
later or higher erosion rates occur along strike 
assuming no warping of isotherms between the 
two sample collection sites.

Fault Slip Rate

Vertical separation of marker horizons across 
the fault, combined with the dip of the fault and 
age constraints, can be used to calculate long-
term (Myr) vertical and horizontal fault slip 

rates. The base of the PRZ can be used to recon-
struct the relative elevation of the ca. 10 Ma land 
surface (i.e., the land surface just prior to fault 
initiation with respect to the modern elevation 
of the PRZ) in the hanging wall (Fig. 3). This 
reconstruction provides a marker horizon in the 
hanging wall, which can be correlated across 
the fault in the footwall to the foreland basin 
stratigraphic horizon that represents the ini-
tial deposition at the onset of faulting identi-
fi ed from growth strata (Fig. 3) (i.e., Clark and 
Bilham, 2008). We discuss the relative offset 
of markers across the fault in terms of modern 
elevation for ease of discussion as we have no 
constraints on paleoelevation.

In order to calculate the closure isotherm 
depth, we fi rst calculate the helium closure 
temperature based on an average eU (53 ppm) 
(Supplemental Table 2 [see footnote 2]) and an 
average cooling rate (4.5–9 °C/Myr) determined 
from the apparent exhumation rate of the inter-
val of fast exhumation (0.3 mm/yr) (Fig. 2 inset) 
and a range of typical continental geothermal 
gradients (15–30 °C/km). Based on the radia-
tion damage trapping model of Shuster et al., 
(2006), we determine a closure temperature of 
58–62 °C. Using a surface temperature of 10 °C 
and a range of typical continental geothermal 
gradients (15–30 °C/km), we calculate an aver-
age closure isotherm depth of 2.6 ± 1 km.

The base of the fossil PRZ is located at 
2700 m elevation (Fig. 2), and the ca. 10 Ma 
surface is reconstructed to 5.3 ± 1.0 km eleva-
tion based on the calculation of closure isotherm 
depth (Fig. 3). Growth strata formed at the base 
of the Niugetao Fm. (900 m depth beneath the 
surface or 600 m elevation) in the Hexi Corri-
dor represent the initiation of deposition related 
to fault motion (Yang et al., 2007) and have 
been dated with magnetostratigraphy at ~9 Ma 
(Fang et al., 2004). Fault throw of 4.7 km is 
determined from the separation between the 
base of the Niugetao Fm. and the reconstructed 
ca. 10 Ma land surface in the hanging wall, 
and we assume faulting has been continuous 
since the onset time and thus the calculated 
rates refl ect Myr scale average of fault motion 
(Fig. 3). Using estimates of fault throw (4.7 ± 
1.0 km), fault initiation (9–10 Ma), and a fault 
dip (30°; Yang et al. 2007) that is assumed to 
remain unchanged in time, we calculate Myr 
time scale vertical and horizontal fault slip rates 
of ~0.5 mm/yr and ~1 mm/yr respectively, and 
a horizontal offset of 8.2 ± 1.8 km. Uncertainty 
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on the horizontal offset is likely to be under-
estimated because it includes only the uncer-
tainty on the vertical offset and not the fault 
geometry. Changes in fault geometry at depth 
or through time would increase the uncertainty 
in the horizontal offset.

Fault slip rates averaged over the past ~10 Myr 
are consistent with late Pleistocene–Holocene 
rates determined in the Yumu Shan (vertical 
rates of 0.4–1.9 mm/yr) (Tapponnier et al., 1990) 
and for the Zhangye Thrust (0.6–0.9 mm/yr and 
0.4–1.1 mm/yr vertical and horizontal rates, 
respectively), a correlative thrust ~100 km to 
the east (Hetzel et al. 2004). Ten million year 
rates are also broadly consistent with the aver-
age geodetic velocity (horizontal) (5.5 ± 1.5 
mm/yr; Zhang et al., 2004) measured between 
the Qaidam and Alashan blocks assuming 
that deformation is distributed throughout the 
~270 km wide Qilian  Shan plateau (Institute of 
Geology, 1993; Metivier et al., 1998; Yuan et al., 
2004). Low slip rates that were maintained over 
the past 10 million years imply that total hori-
zontal fault offsets in the North Qilian range are 
likely to be small (< 10 km).

DISCUSSION

We interpret slow cooling of the northern 
Qilian Shan during 106–10 Ma as an indica-
tion that faulting did not reach this portion of 
the range until relatively late in the orogen’s his-
tory. Fault initiation at ca. 10 Ma in the northern 
Qilian Shan range appears to be synchronous 
along strike for at least ~100 km (Bovet et al., 
2009). Such a young age of faulting broadly 
conforms to the step-wise growth model of pla-
teau formation (Tapponnier et al., 2001) only 
in the sense that northern Tibet represents the 
youngest or most recent stage of orogenisis. 
Unlike the step-wise model, we suggest that the 
late Miocene initiation of the northern Qilian 
Shan fault represents only a modest advance-
ment of ~100 km of the plateau perimeter based 
on deformation ages in the central and southern 
parts of the range. Motion on the northern range 
front occurs signifi cantly later than initial fault-
ing in the central Qilian Shan (>33 Ma) (Yin 
et al., 2002), southern Qilian Shan/N. Qaidam 
terrane (broadly speaking since Paleocene time) 
(Yin et al., 2008) though locally faults initiate at 
later times (e.g., Sun et al., 2005; Wang et al., 
2004), broad deformation in northeastern Tibet 
between 55 and 52 Ma (Dupont-Nivet et al., 
2004; Horton et al., 2004) and locally along the 
West Qinling fault at 45–50 Ma (Clark et al., 
2010). Late Miocene initiation of the north Qil-
ian fault also signifi cantly postdates the initial 
Oligocene motion along the Altyn Tagh fault 
(Ritts et al., 2004).

Miocene growth of the northern Qilian Shan 
could be local and simply represent the latest 
outgrowth of faulting within the larger Qilian 
Shan/N. Qaidam region in the direction of plate 
convergence. As Bovet et al. (2009) note, Mio-
cene growth of the northern Qilian Shan also 
follows a decrease in fault slip accumulation of 
the Altyn Tagh fault (post-early Miocene; Yue 
et al., 2004) and uplift of the Altun Shan and 
SE Tarim Basin since 15–16 Ma (Ritts et al., 
2008). Therefore between early to middle Mio-
cene time, the kinematics of the Altyn Tagh fault 
system in northern Tibet may have evolved from 
fast strike-slip motion to distributed uplift and 
reverse faulting (Ritts et al., 2008). Following 
this change from strike-slip to shortening, the 
northern plateau margin expands to the north-
ern Qilian Shan by 10 Ma, which may represent 
the fi nal stage of distributed, reverse faulting 
and range growth that follows in the wake of 
decreased slip along the Altyn Tagh fault.

Alternatively, or in concert with the aforemen-
tioned changes to the Altyn Tagh fault system, 
convective removal of an overthickened, gravi-
tationally unstable mantle lithosphere beneath 
north-central Tibet with associated elevation 
gain of 1–2 km of the central plateau (Molnar 
et al., 1993) would augment the force per unit 
length that Tibet applies to its surroundings, 
perhaps suffi ciently to displace northward the 
Qaidam Basin as an effectively rigid block. The 
thinner and less deformed crust of the Qaidam 
Basin may act as a rigid block capable of 
deforming the region to the east or north by rota-
tion or northward propagation (Dupont-Nivet 
et al., 2002). Increased topographic gradients 
may cause compressional stresses that translate 
the Qaidam Basin northward as a secondary 
indenter that causes deformation of the Qilian 
Shan to step northward and faulting in north-
eastern Tibet to extend eastward to the Liupan 
Shan (Zheng et al., 2006).

Since 10 Ma, the northeastern perimeter of 
the Tibetan Plateau advanced for nearly the 
fi rst time since collision began, but it is impor-
tant to note that the magnitude of this change 
was small compared to the north-south extent 
of the plateau prior to 10 Ma. Faulting within 
the central and southern Qilian Shan and in 
northeastern Tibet begins near the time of Indo-
Asian collision (Dupont-Nivet et al., 2004; 
Horton et al., 2004; Yin et al., 2008; Clark et al., 
2010). In late Miocene time, the areal extent of 
faulting expands northward by ~100 km from 
the central to the northern Qilian Shan and 
eastward by ~200 km to the Liupan Shan (at 
~8 Ma; Zheng et al., 2006) (Fig. 1 inset). Such 
a modest expansion in northern Tibet can be 
correlated with the more dramatic development 
of the eastern plateau by lower crustal fl ow, 

where more than 2.25 × 107 km3 crustal volume 
has been added east of the main collision zone 
(Royden et al., 1997; Clark and Royden, 2000; 
Clark et al., 2005a) since mid-late Miocene 
time (Kirby et al., 2002; Clark et al., 2005b; 
Ouimet et al., 2010). This suggests that the late 
Miocene to recent period of plateau growth was 
mainly east, and not north as might be simply 
predicted from plate boundary stresses applied 
by the northward motion of India.
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