Abstract

The tilted Wooley Creek batholith (Klamath Mountains, California, USA) consists of three main zones. Field and textural relationships in the older lower zone suggest batch-wise emplacement. However, compositions of augite from individual samples plot along individually distinct fractionation trends, confirming emplacement as magma batches that did not interact extensively. The younger upper zone is upwardly zoned from tonalite to granite. Major and trace element compositions of hornblende show similar variations from sample to sample, indicating growth from a single magma batch that was homogenized by convection and then evolved via upward percolation of interstitial melt. Highly porphyritic dacitic roof dikes, the hornblende compositions of which match those of upper zone rocks, demonstrate that the upper zone mush was eruptible. The central zone contains rocks of both lower and upper zone age, although in most samples hornblende compositions match those of the upper zone. The zone is rich in synplutonic dikes and mafic magmatic enclaves. These features indicate that the central zone was a broad transition zone between upper and lower parts of the batholith and preserves part of the feeder system to the upper zone. Homogenization of the upper zone was probably triggered by the arrival of mafic magma in the central zone. Continued emplacement of mafic magmas may have provided heat that permitted differentiation of the upper zone magma by upward melt percolation. This study illustrates the potential for use of trace element compositions and variation in rock-forming minerals to identify individual magma batches, assess interactions between them, and characterize magmatic processes.

You do not currently have access to this article.