Abstract

Volcanic rocks in the Sonoma volcanic field in the northern California Coast Ranges contain heterogeneous assemblages of a variety of compositionally diverse volcanic rocks. We have used field mapping, new and existing age determinations, and 343 new major and trace element analyses of whole-rock samples from lavas and tuff to define for the first time volcanic source areas for many parts of the Sonoma volcanic field. Geophysical data and models have helped to define the thickness of the volcanic pile and the location of caldera structures. Volcanic rocks of the Sonoma volcanic field show a broad range in eruptive style that is spatially variable and specific to an individual eruptive center. Major, minor, and trace-element geochemical data for intracaldera and outflow tuffs and their distal fall equivalents suggest caldera-related sources for the Pinole and Lawlor Tuffs in southern Napa Valley and for the tuff of Franz Valley in northern Napa Valley. Stratigraphic correlations based on similarity in eruptive sequence and style coupled with geochemical data allow an estimate of 30 km of right-lateral offset across the West Napa-Carneros fault zones since ∼5 Ma.

The volcanic fields in the California Coast Ranges north of San Francisco Bay are temporally and spatially associated with the northward migration of the Mendocino triple junction and the transition from subduction and associated arc volcanism to a slab window tectonic environment. Our geochemical analyses from the Sonoma volcanic field highlight the geochemical diversity of these volcanic rocks, allowing us to clearly distinguish these volcanic rocks from those of the roughly coeval ancestral Cascades magmatic arc to the west, and also to compare rocks of the Sonoma volcanic field to rocks from other slab window settings.

You do not currently have access to this article.