Abstract

The Antwerp-Rossie metaigneous suite (ARS) represents arc magmatism related to closure of the Trans-Adirondack backarc basin during Shawinigan collisional orogenesis (ca. 1200–1160 Ma). The ARS is of calc-alkaline character, bimodal, and lacks intermediate compositions. Primarily intruding marble and pelitic gneiss, the ARS is spatially restricted to the Adirondack Lowlands southeast of the Black Lake fault. On discrimination diagrams, the ARS samples plot primarily within the volcanic arc granite fields. Incompatible elements show an arc-like signature with negative Nb, Ta, P, and Zr and positive Cs, Pb, La, and Nd anomalies relative to primitive mantle. Neodymium model ages (TDM, depleted mantle model) range from 1288 to 1634 Ma; the oldest ages (1613–1634) and smallest epsilon Nd (εNd) values are found in proximity to the Black Lake fault, delineating the extent of Laurentia prior to the Shawinigan orogeny. The epsilon Nd values at crystallization (1200 Ma) plot well below the depleted mantle curve. Geochemical and isotopic similarities to the Hermon granitic gneiss (HGG) (ca. 1182 Ma) and differences from the Hyde School Gneiss–Rockport Granite suites (1155–1180 Ma) suggest that arc plutonism rapidly transitioned into A-type AMCG (anorthosite-mangerite-charnockite-granite) plutonism. Given the short duration of Shawinigan subduction, apparently restricted extent of the ARS (Adirondack Lowlands), location outboard of the pre-Shawinigan Laurentian margin, intrusion into the Lowlands supracrustal sequence, bimodal composition, and recent discovery of enriched mantle rocks in the Lowlands, it is proposed the ARS formed as a consequence of subduction related to closure of a backarc basin that once extended between the Frontenac terrane and the Southern Adirondacks.

You do not currently have access to this article.