The Precordillera terrane in northwestern Argentina is interpreted to be an exotic (Laurentian) continental fragment that was accreted to western Gondwana during the Ordovician. One prominent manifestation of the subduction and collision process is a Middle–Upper Ordovician clastic wedge, which overlies a passive-margin carbonate-platform succession in the Precordillera. U/Pb ages of detrital zircons from sandstones within the clastic wedge, as well as zircons from clasts within conglomerates, provide documentation for the composition of the sediment provenance. The ages of detrital zircons are consistent vertically through the succession, as well as laterally along and across strike of the Precordillera, indicating a single, persistent sediment source throughout deposition of the clastic wedge. The dominant mode (∼1350–1000 Ma) of the detrital-zircon ages corresponds to the ages of basement rocks in the Western Sierras Pampeanas along the eastern side of the Precordillera. A secondary mode (1500–1350 Ma) corresponds in age to the Granite-Rhyolite province of Laurentia, an age range which is not known in ages of basement rocks of the Western Sierras Pampeanas; however, detritus from Granite-Rhyolite-age rocks in the basement of the Precordillera was available through recycling of synrift and passive-margin cover strata. Igneous clasts in the conglomerates have ages (647–614 Ma) that correspond to the ages of minor synrift igneous rocks in the nearby basement massifs; the same ages are represented in a minor mode (∼750–570 Ma) of detrital-zircon ages. A quartzite clast in a conglomerate, as well as parts of the population of detrital zircons, indicates the importance of a source in the metasedimentary cover of the leading edge of the Precordillera. The Famatina continental-margin magmatic arc reflects pre-collision subduction of Precordillera lithosphere beneath the western Gondwana margin; however, no detrital zircons have ages that correspond to Famatina arc magmatism, indicating that sedimentary detritus from the arc may have been trapped in a forearc basin and did not reach the foreland. The indicators of sedimentary provenance for the foreland deposits are consistent with subduction of the Precordillera beneath western Gondwana, imbrication of basement rocks from either the Precordillera or Gondwana into an accretionary complex, and recycling of deformed Precordillera cover rocks.

You do not currently have access to this article.