Analysis of geothermal energy resources in the Appalachian Basin of the eastern United States is of interest, given the region’s population- and climate-driven demand for thermal energy. This study provides a fuller picture of geothermal resources across New York and Pennsylvania than previous studies by providing a rigorous statistical analysis of temperature-depth data using records from nearly 8000 locations. The compilation of thousands of temperature-depth data enables a significant increase in the spatial resolution of geothermal resource assessment maps for this region. In addition, this project has contributed to the compilation of geothermal data at a national level through the National Geothermal Data System. These temperature-depth measurements are byproducts of historical and recent drilling for petroleum and natural gas in the sedimentary basin. Bottom hole temperatures (BHTs) were recorded before the wells reached thermal equilibrium and at a wide range of depths. To extract a comprehensive description of the thermal state of the Appalachian Basin strata required application of both a BHT correction scheme and a simple thermal model. The model results for individual wells were combined with geostatistical interpolation employing kriging to produce maps that reveal significant variations in subsurface thermal gradient and surface heat flow with markedly improved spatial resolution. An area in south-central New York State displays favorable geothermal resource potential, with heat flow estimates of 50–60 mW/m2. There are 2 elongate, 200–300 km long, northeast-trending bands of favorable geothermal resource potential in central and western Pennsylvania, with heat flow of 55–90 mW/m2.

You do not currently have access to this article.