The Upper Jurassic and Lower Cretaceous part of the Brookian sequence of northern Alaska consists of syntectonic deposits shed from the north-directed, early Brookian orogenic belt. We employ sandstone petrography, detrital zircon U-Pb age analysis, and zircon fission-track double-dating methods to investigate these deposits in a succession of thin regional thrust sheets in the western Brooks Range and in the adjacent Colville foreland basin to determine sediment provenance, sedimentary dispersal patterns, and to reconstruct the evolution of the Brookian orogen. The oldest and structurally highest deposits are allochthonous Upper Jurassic volcanic arc–derived sandstones that rest on accreted ophiolitic and/or subduction assemblage mafic igneous rocks. These strata contain a nearly unimodal Late Jurassic zircon population and are interpreted to be a fragment of a forearc basin that was emplaced onto the Brooks Range during arc-continent collision. Synorogenic deposits found at structurally lower levels contain decreasing amounts of ophiolite and arc debris, Jurassic zircons, and increasing amounts of continentally derived sedimentary detritus accompanied by broadly distributed late Paleozoic and Triassic (359–200 Ma), early Paleozoic (542–359 Ma), and Paleoproterozoic (2000–1750 Ma) zircon populations. The zircon populations display fission-track evidence of cooling during the Brookian event and evidence of an earlier episode of cooling in the late Paleozoic and Triassic. Surprisingly, there is little evidence for erosion of the continental basement of Arctic Alaska, its Paleozoic sedimentary cover, or its hinterland metamorphic rocks in early foreland basin strata at any structural and/or stratigraphic level in the western Brooks Range. Detritus from exhumation of these sources did not arrive in the foreland basin until the middle or late Albian in the central part of the Colville Basin.

These observations indicate that two primary provenance areas provided detritus to the early Brookian foreland basin of the western Brooks Range: (1) local sources in the oceanic Angayucham terrane, which forms the upper plate of the orogen, and (2) a sedimentary source region outside of northern Alaska. Pre-Jurassic zircons and continental grain types suggest the latter detritus was derived from a thick succession of Triassic turbidites in the Russian Far East that were originally shed from source areas in the Uralian-Taimyr orogen and deposited in the South Anyui Ocean, interpreted here as an early Mesozoic remnant basin. Structural thickening and northward emplacement onto the continental margin of Chukotka during the Brookian structural event are proposed to have led to development of a highland source area located in eastern Chukotka, Wrangel Island, and Herald Arch region. The abundance of detritus from this source area in most of the samples argues that the Colville Basin and ancestral foreland basins were supplied by longitudinal sediment dispersal systems that extended eastward along the Brooks Range orogen and were tectonically recycled into the active foredeep as the thrust front propagated toward the foreland. Movement of clastic sedimentary material from eastern Chukotka, Wrangel Island, and Herald Arch into Brookian foreland basins in northern Alaska confirms the interpretations of previous workers that the Brookian deformational belt extends into the Russian Far East and demonstrates that the Arctic Alaska–Chukotka microplate was a unified geologic entity by the Early Cretaceous.

You do not currently have access to this article.