As North America collided with Africa to form Pangea during the Alleghanian orogeny, crystalline and sedimentary rocks in the southeastern United States were thrust forelandward along the Appalachian décollement. We examined Ps receiver functions to better constrain the kinematics of this prominent subsurface structure. From Southeastern Suture of the Appalachian Margin Experiment (SESAME) and other EarthScope stations on the Blue Ridge–Piedmont crystalline megathrust, we find large arrivals from a 5–10-km-deep converter. We argue that a strong contrast in dipping anisotropic foliation occurs at the subhorizontal Appalachian décollement, and propose that such a geometry may be typical for décollement structures. Conversion polarity flips can be explained by an east-dipping foliation, but this orientation is at odds with the overlying northeast-trending surface tectonic grain. We suggest that prior to late Alleghanian northwest-directed head-on collision, the Appalachian décollement accommodated early Alleghanian west-vergence, independent of the overlying Blue Ridge–Piedmont structural inheritance. The geophysical expression of dipping anisotropic foliation provides a powerful tool for investigating subsurface kinematics, especially where they are obscured by overlying fabric, to disentangle the tectonic complexities that embody oblique collisional orogens.

This content is PDF only. Please click on the PDF icon to access.