The nature and growth of magmatic plumbing systems are of fundamental importance to igneous geology. Traditionally, magma chambers have been viewed as rapidly emplaced bodies of molten rock or partially crystallized “magma mush” connected to the surface by a narrow cylindrical conduit (referred to as the “balloon-and-straw” model). Recent data suggest, however, that magma chambers beneath volcanoes are formed incrementally through amalgamation of smaller intrusions. Here we present the first high-resolution three-dimensional reconstruction of an ancient volcanic plumbing system as a large laccolithic complex. By integrating seismic reflection and gravity data, we show that the ~200 km3 laccolith appears to have formed through partial amalgamation of smaller intrusions. The complex appears to have fed both surface volcanism and an extensive sill network beneath the volcanic edifice. Numerous sills are imaged within the volcanic conduit, indicating that magma stalled at various levels during its ascent. Our results reveal for the first time the entire multicomponent plumbing system within a large ancient shield volcano.

This content is PDF only. Please click on the PDF icon to access.