The nature of incoming sediments is a key controlling factor for the occurrence of megathrust earthquakes in subduction zones. In the 2011 Mw 9 Tohoku earthquake (offshore Japan), smectite-rich clay minerals transported by the subducting oceanic plate played a critical role in the development of giant interplate coseismic slip near the trench. Recently, we conducted intensive controlled-source seismic surveys at the northwestern part of the Pacific plate to investigate the nature of the incoming oceanic plate. Our seismic reflection data reveal that the thickness of the sediment layer between the seafloor and the acoustic basement is a few hundred meters in most areas, but there are a few areas where the sediments appear to be extremely thin. Our wide-angle seismic data suggest that the acoustic basement in these thin-sediment areas is not the top of the oceanic crust, but instead a magmatic intrusion within the sediments associated with recent volcanic activity. This means that the lower part of the sediments, including the smectite-rich pelagic red-brown clay layer, has been heavily disturbed and thermally metamorphosed in these places. The giant coseismic slip of the 2011 Tohoku earthquake stopped in the vicinity of a thin-sediment area that is just beginning to subduct. Based on these observations, we propose that post-spreading volcanic activity on the oceanic plate prior to subduction is a factor that can shape the size and distribution of interplate earthquakes after subduction through its disturbance and thermal metamorphism of the local sediment layer.

This content is PDF only. Please click on the PDF icon to access.