We analyzed the first Cu isotopes in primary cupreous pyrite and orpiment, from modern CO2-degassing, seafloor massive sulfide diffuser vents (“ΚCO2Ds”), from the Kolumbo submarine volcano, Hellenic volcanic arc. Samples came from six ΚCO2Ds that are actively boiling. Pyrite comprises colloform pyrite-I and euhedral pyrite-II, which occur erratically distributed within the ΚCO2Ds and are contemporaneous with barite and spatially concurrent with the chalcopyrite that is lining narrow internal conduits, respectively. Orpiment occurs on the outer walls of the KCO2Ds with barite and stibnite. The δ65Cupyrite-I values show high variability, ranging from +2.93‰ to +6.38‰, whereas the δ65Cupyrite-II and δ65Cuchalcopyrite values vary from −0.94‰ to +0.25‰ and −0.45‰ to −0.09‰, respectively. The range of δ65Cuorpiment between +1.90‰ and +25.73‰ is the most extreme ever reported from any geological setting. Pyrite-I is concentrically layered, with a core comprising random crystallites, whereas the mantle crystallites have grain-size, shape, and orientation variability between layers. Pyrite-II forms aggregates of uniform euhedral pyrite crystals. Pyrite-I has higher concentrations of Cu (≤21,960 ppm) compared to pyrite-II (≤4963 ppm), and both have incompatible and volatile metal(loid)-rich composition and low Sb/Pb (<0.5) and Tl/Pb (<0.03) ratios. When combined with evidence for significant magmatic contributions at Kolumbo and geochemical and micro-textural evidence for recurrent intense boiling and/or flashing or gentle and/or non-boiling, the measured extreme δ65Cu values are consistent with transport of Cu by vapor that is preferentially enriched by heavy 65Cu and controlled by continuous Rayleigh distillation−type Cu fractionation. Boiling-induced Cu vapor transport can generate extreme Cu isotope fractionation.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.