The ongoing oceanic oxygen loss will have a profound impact on the distribution and density of life on Earth. However, drivers of the initiation and termination of global oceanic deoxygenation are poorly understood. Here we present a thallium isotope record that reveals three rapid (50 k.y.) global deoxygenation intervals during the mid-Cretaceous that postdate massive volcanism by at least 1 m.y. New strontium isotope data reveal gradually enhanced continental weathering under a warmer climate following volcanism. However, global deoxygenation occurred only under the combined influences of a long-term increase in weathering rates in a warmer climate and short-term orbital modulation that led to atmospheric-circulation reorganization. Interactions of multiple drivers are consistent with the abrupt termination of each deoxygenation interval. Dynamic oxygenation responses in the mid-Cretaceous highlight the role of these processes for understanding the consequences and potential termination of the current oceanic deoxygenation.

This content is PDF only. Please click on the PDF icon to access.
You do not have access to this content, please speak to your institutional administrator if you feel you should have access.