Spatial complexity impacts the resilience of river ecosystems by mediating processes that control the sources and sinks of sediment and organic material. Using four independent geochemical tracers and three morphometric indices, we show that downstream spatial gradients in stream power (Ω) predict storage of material in the channels and margins and/or floodplains. A field test in a 48 km2 watershed demonstrates that reaches with downstream decreases in Ω coincide with wider floodplains and elevated inventories of 137Cs, 210Pbex (ex—excess), and organic matter in locations of the ~3 to 20 yr floodplain. In contrast, reaches with downstream increases in Ω coincide with narrower floodplains and decreased inventories of 137Cs, 210Pbex, and organic matter. The occurrence of in-channel bedrock exposures and the activity of short-lived 7Be in within-channel sediments also correlate with downstream Ω gradients, demonstrating a link, over both short and long time scales, between within-channel processes and floodplain-forming processes. The combined geochemical and physical characteristics demonstrate the importance of downstream gradients in sediment transport, characterized by downstream changes in stream power rather than at-a-point stream power, in determining spatial complexity in carbon and sediment storage at intermediate scales (102 to 103 m) in river systems.

This content is PDF only. Please click on the PDF icon to access.
You do not have access to this content, please speak to your institutional administrator if you feel you should have access.