Late Tonian to Cambrian sedimentary sequences in northwestern India and South China provide vital evidence for modeling their paleogeographic linkage, including their juxtaposition and subsequent separation during the transition from the Rodinia to the Gondwana supercontinents. Similarities in lithostratigraphy and detrital zircon U-Pb-Hf-O isotopic characteristics in the late Tonian sedimentary units from both regions underline a common provenance. A substantial decrease in zircon δ18O values from super- to sub-mantle compositions and simultaneous increase in the zircon εHf(t) values in South China and northwestern India for the 800–700 Ma time window suggest a common Neoproterozoic extensional magmatic event, corresponding with the Rodinia breakup. A distinct change in sedimentary provenance is noted during the Cryogenian period. Sedimentation along the northwestern margin of India for the remainder of the Neoproterozoic encompasses large volumes of clastic detritus dominated by old zircon ages, derived inboard from the Indian craton. In contrast, contemporaneous sedimentary units in the Yangtze region of South China are dominated by Neoproterozoic zircons. The detrital zircon age data underline a close paleogeographic linkage between northwestern India and South China (Yangtze and Cathaysia regions) in the Rodinia supercontinent configuration and argue for their separation through continental rifting during the Cryogenian. Northwestern India developed into a passive margin, whereas the South China block partially rifted, rotated, and migrated dextrally along the Gondwana margin toward northeastern India and Western Australia, such that the Cathaysia block continued to receive detritus from Gondwana continental regions.

This content is PDF only. Please click on the PDF icon to access.
You do not currently have access to this article.