Understanding the thermo-rheological regime and physical character of lava while it is flowing is crucial if we are to adequately model lava flow emplacement dynamics. We present measurements from simultaneous sampling and thermal imaging across the full width of an active channel at Piton de la Fournaise (La Réunion, France). Our data set involves measurements of flow dynamics at three sites down-channel from the vent. Quantification of flow velocities, cooling rates, sample texture, and rheology allows all thermo-rheological parameters to be linked, and down- as well as cross-channel variations to be examined. Within 150 m from the vent, we recorded an unexpected velocity increase (from 0.07 to 0.1 m/s), in spite of cooling rates of 0.19–0.29 °C/m and constant slope. This change requires a switch from a Newtonian-dominated regime to a Bingham plug–dominated regime. Sample analysis revealed that the plug consists of foam-like lava, and the shear zones involve vesicle-poor (low-viscosity) lava. With distance from the vent, shear zones develop, carrying the vesicular plug between them. This causes flow to initially accelerate, helped by bubble shearing in narrow lateral shear zones, until cooling takes over as the main driver for viscosity increase and, hence, velocity decrease.
Article navigation
Article Contents
Research Article|
November 22, 2019
How shear helps lava to flow
A. Harris
;
A. Harris
1
Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France
Search for other works by this author on:
S. Mannini
;
S. Mannini
1
Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France
Search for other works by this author on:
S. Thivet
;
S. Thivet
1
Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France
Search for other works by this author on:
M.O. Chevrel
;
M.O. Chevrel
1
Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France
Search for other works by this author on:
L. Gurioli
;
L. Gurioli
1
Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France
Search for other works by this author on:
N. Villeneuve
;
N. Villeneuve
2
Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France3
Université de La Réunion, Laboratoire Géosciences
Réunion, F-97744 Saint Denis, France
Search for other works by this author on:
A. Di Muro
;
A. Di Muro
2
Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France4
Observatoire Volcanologique du Piton de la Fournaise, Institut de physique du globe de Paris, F-97418 La Plaine des Cafres, France
Search for other works by this author on:
A. Peltier
A. Peltier
2
Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France4
Observatoire Volcanologique du Piton de la Fournaise, Institut de physique du globe de Paris, F-97418 La Plaine des Cafres, France
Search for other works by this author on:
Geology (2019)
Article history
received:
17 May 2019
rev-recd:
17 Oct 2019
accepted:
17 Oct 2019
first online:
22 Nov 2019
Citation
A. Harris, S. Mannini, S. Thivet, M.O. Chevrel, L. Gurioli, N. Villeneuve, A. Di Muro, A. Peltier; How shear helps lava to flow. Geology doi: https://doi.org/10.1130/G47110.1
Download citation file:
Close
You could not be signed in. Please check your email address / username and password and try again.