Detailing the relationship between stress and reactions in metamorphic rocks has been controversial, and much of the debate has centered on theory. Here, we add to this discussion and make a major advance by showing in time-resolved synchrotron microtomography experiments that a reacting and deforming sample experiencing an elastic differential stress produces a fabric orthogonal to the largest principal stress. This fabric forms very early in the reaction and can be shown to be unrelated to strain. The consequences of this are significant because a non-hydrostatic stress state is a very common geological occurrence. Our data provide the basis for new interpretations of the classical, and enigmatic, serpentine fabrics of Val Malenco, Italy, and Cerro del Almirez, Spain, where we relate the reported fabrics to transient, and cyclical, differential stresses from magma intrusion and the earthquake cycle.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.