The mid-Cretaceous thermal maximum (KTM) during Cenomanian to Santonian times from ca. 100 to 83 Ma is considered among Earth's warmest sustained intervals of the Phanerozoic. The time interval is also characterized by major paleoceanographic changes in the form of an oceanic anoxic event and the flooding of epicontinental seaways, such as the Western Interior Seaway in North America. We report carbonate clumped isotope (Δ47) paleotemperatures (TΔ47) of the KTM measured from Cenomanian oyster fossils of the Western Interior Seaway. Following screening of specimens for carbonate diagenesis and exclusion of geographic zones with evidence consistent with solid-state Δ47 reordering, a mean TΔ47 of 28–34 °C (95% confidence interval for the standard error of mean) for primary oyster calcite quantifies extreme mid-latitude warmth in North America. When combined with existing Campanian and Maastrichtian marine TΔ47 records, the new data constrain Late Cretaceous temperature trends underlying the evolution of North American faunal and stratigraphic records. These TΔ47 data from the peak KTM highlight the potential of this proxy to quantitatively resolve the upper thermal limits of Phanerozoic greenhouse climates.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.