It is widely thought that oceanic subduction can trigger cratonic keel delamination, but the southwestern Yangtze craton (SYC; southwestern China) lost its lower keel during Cenozoic continental collision. The upper mantle beneath the thinned SYC contains its incompletely delaminated keel, which has high-velocity seismic anomalies. Combining geophysical observations with the geochemistry of Eocene mafic potassic lavas derived from the SYC mantle at different depths, we suggest that the deep (~130 km) delaminated lithosphere was more fertile and dense, with low-forsterite (Fo; molar 100 × Mg/[Mg + Fe] = 91.3) and high-δ18O (5.9‰) olivine, than the shallow (~55 km) intact lithosphere (Fo = 94.2; δ18O = 5.2‰), although both were rehydrated and oxidized. The deep keel underwent strong refertilization and densification owing to the addition of Fe-rich basaltic melts during earlier oceanic subduction. Subduction-driven refertilization and subsequent collision-driven cooling caused cratonic keel delamination due to compositional and thermal densification rather than hydration- or oxidation-induced rheological weakening. Our study provides an example of Cenozoic cratonic keel delamination in a collisional orogen and highlights the key roles of compositional and thermal densification in delamination during subduction and collision.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.