Abstract

The Makran subduction zone has produced M 8+ earthquakes and subsequent tsunamis in historic times, hence indicating high risk for the coastal regions of southern Iran, Pakistan, and neighboring countries. Besides this, the Makran subduction zone is an end-member subduction zone featuring extreme properties, with one of the largest sediment inputs and the widest accretionary wedge on Earth. While surface geology and shallow structure of the offshore wedge have been relatively well studied, primary information on the deeper structure of the onshore part is largely absent. We present three crustal-scale, trench-perpendicular, deep seismic sounding profiles crossing the subaerial part of the accretionary wedge of the western Makran subduction zone in Iran. P-wave travel-time tomography based on a Monte Carlo Markov chain algorithm as well as the migration of automatic line drawings of wide-angle reflections reveal the crustal structure of the wedge and geometry of the subducting oceanic plate at high resolution. The images shed light on the accretionary processes, in particular the generation of continental crust by basal accretion, and provide vital basic information for hazard assessment and tsunami modeling.

You do not currently have access to this article.