The Chicxulub crater (Yucatán Peninsula, Mexico) is considered exceptional in many scientific aspects; morphologically it is the only known impact structure on Earth with a well-preserved peak ring. Recent drilling (International Ocean Discovery Program–International Continental Scientific Drilling Program Expedition 364) into this topographic feature provides insights into the structural properties and complex formation of a peak ring. By means of U-stage microscopy on shocked quartz grains from the granitic section of the recovered drill core, orientations of feather features (FFs) were determined and local principal axis of stress (σ1) orientations of the shock wave were derived. The FF orientations are strongly confined to a radially outward trend (WNW) relative to the crater center, which emphasizes a link between FF formation and the direction of shock-wave propagation. Thus, FFs represent an excellent tool as a stress-orientation indicator for the shock wave. Our microstructural data set shows that the granitic basement of the peak ring between ∼750 and ∼1200 m below seafloor behaved as a semi-coherent block above an imbricate thrust zone, and underwent both rotation and local folding during cratering. This validates the block sizes of acoustic fluidization employed in most Chicxulub-scale impact simulations. The folding of the upper part of the granitic basement may have developed by either (1) compression of the crater wall at the transient cavity and/or (2) dragging by the centripetal flow of the overlying crater material.

You do not currently have access to this article.