Fluid overpressures are widely expected during hydrocarbon generation and expulsion from source rocks, yet direct evidence for this phenomenon is lacking in the case of organic-rich shales. Here we show that formation of bed-parallel fibrous calcite veins in mature laminated organic-rich shales in the Eocene Dongying depression, Bohai Bay Basin, east China, occurred in direct response to fluid overpressure due to hydrocarbon generation. The evidence for overpressure is recorded by coexisting primary aqueous and petroleum inclusions in the calcite fibers. Our results show that all analyzed fluid-inclusion assemblages record variable degrees of overpressure during vein dilation, ranging from only modestly in excess of hydrostatic, to approaching and perhaps exceeding lithostatic. Thus, our results indicate that fluid pressures during dilation of horizontal veins are not necessarily equal to the opposing force of overburden throughout the history of opening. This suggests that at least some of the vein dilation is accommodated by concomitant narrowing of the adjacent wall-rock laminae, likely by scavenging (dissolution and reprecipitation) of CaCO3 from the adjacent wall rock.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.