We utilized a novel approach to modeling the oceanic sulfur cycle by combining δ34S and Δ33S curves from sulfate evaporite minerals in order to investigate redox conditions during the mid-Neoproterozoic. This technique allowed us to estimate the oxidized and reduced proportions of the total oceanic sulfur sink. Isotopic data from the mid-Neoproterozoic Minto Inlet Formation (Victoria Island, Northwest Territories, Canada; ca. 850 Ma) show a limited range (16.8‰ ± 1.4‰) in δ34S of seawater sulfate and a sulfur cycle that is strongly shifted toward the sulfate sink (pyrite burial fraction, ƒp, = 0.2), suggesting oxidizing conditions in the ocean and atmosphere at the time of deposition. These evaporites and others, which were deposited contemporaneously within a huge intracontinental basin, acted as a chemical pump, removing sulfate from the oceans and oxygen from the atmosphere to be buried as sulfate evaporites.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.