Abstract

The geometry of basin-margin strata documents changes in water depth, slope steepness, and sedimentary facies distributions. Their stacking patterns are widely used to define shelf-edge trajectories, which reflect long-term variations in sediment supply and relative sea-level change. Here, we present a new method to reconstruct the geometries and trajectories of clinoform-bearing basin-margin successions. Our sequential decompaction technique explicitly accounts for downdip lithology variations, which are inherent to basin-margin stratigraphy. Our case studies show that preferential compaction of distal, fine-grained foresets and bottomsets results in a vertical extension of basin-margin strata and a basinward rotation of the original shelf-edge trajectory. We discuss the implications these effects have for sea-level reconstructions and for predicting the timing of sediment transfer to the basin floor.

You do not currently have access to this article.