Abstract

The Frasnian-Famennian (F-F) global event, one of the five largest biotic crises of the Phanerozoic, has been inconclusively linked to rapid climatic perturbations promoted in turn by volcanic cataclysm, especially in the Viluy large igneous province (LIP) of Siberia. Conversely, the triggers of four other Phanerozoic mass extinction intervals have decisively been linked to LIPs, owing to documented mercury anomalies, shown as the diagnostic proxy. Here, we report multiple Hg enrichments in the two-step late Frasnian (Kellwasser) crisis interval from paleogeographically distant successions in Morocco, Germany, and northern Russia. The distinguishing signal, >1 ppm Hg in the domain of closing Rheic Ocean, was identified in different lithologies immediately below the F-F boundary and approximately correlated with the onset of the main extinction pulse. This key Hg anomaly, comparable only with an extreme spike known from the end-Ordovician extinction, was not controlled by increased bioproductivity in an anoxic setting. We suggest, therefore, that the global chemostratigraphic pattern near the F-F boundary records a greatly increased worldwide Hg input, controlled by the Center Hill eruptive pulse of the Eovariscan volcanic acme, but likely not manifested exclusively by LIP(s). Consequently, all five major biotic crises of the Phanerozoic have now been more reliably linked to volcanic cataclysms.

You do not currently have access to this article.