Abstract

A melt contamination model is presented to explain the formation of “I-type” granitic rocks, based on studies of migmatitic mafic granulites from the Hidaka Metamorphic Belt (Japan). Analysis of apatite and zircon from leucosomes and mesosomes of the migmatites reveals grain-scale Nd and Hf isotope heterogeneities of >10 epsilon units, inconsistent with closed-system anatexis. We interpret this marked isotopic variability to instead reflect hybridization between metasedimentary-derived partial melts and interlayered mafic granulite horizons during extraction of silicic melt from the lower crust. This open-system melt-rock interaction induces local isotopic modification of the mafic granulites and shifts the Hf isotope signature of the anatectic melt to more radiogenic values, similar to those of hornblende-bearing (I-type) granitic rocks emplaced into the Hidaka sequence at higher crustal levels. This study shows that the generation of broadly I-type granitic magmas does not require extreme temperatures to extensively melt meta-igneous rocks, nor is the direct input of mantle magma essential. Mineral-scale isotopic heterogeneities in such magmas reflect derivation from contrasting crustal sources and the rate and mechanism of magma transfer through the granulitic lower crust.

You do not currently have access to this article.