Abstract

The longevity of giant magma bodies in the Earth’s crust prior to eruption is poorly constrained, but recognition of short time scales by multiple methods suggests that the accumulation and eruption of these giant bodies may occur rapidly. We describe a new method that uses textures of quartz-hosted melt inclusions, determined using quantitative three-dimensional propagation phase-contrast X-ray tomography, to estimate quartz crystallization times and growth rates, and we compare the results to those from Ti diffusion profiles. We investigate three large-volume, high-silica rhyolite eruptions: the 240 ka Ohakuri-Mamaku and 26.5 ka Oruanui (Taupo Volcanic Zone, New Zealand), and the 760 ka Bishop Tuff (California, USA). Our results show that (1) longevity estimates from melt inclusion textures and Ti diffusion profiles are comparable, (2) quartz growth rates average ∼10−12 m/s, and (3) quartz melt inclusions give decadal to centennial time scales, revealing that giant magma bodies can develop over notably short historical time scales.

You do not currently have access to this article.