The contact between mantle peridotite and gabbro from the lower oceanic crust is usually underlined by a horizon of dunite. The origin of this dunitic transition zone (DTZ) is still debated. It is viewed either as a pile of cumulus olivine from high-MgO melts, or as former mantle peridotite pervasively percolated by melts undersaturated with pyroxene (e.g., as mid-oceanic ridge basalts [MORBs] at low pressure), and transformed into dunite. We show that the two hypotheses are not mutually exclusive, although they do not account for the same parts of the DTZ. We determined a petrological profile through a 330-m-thick DTZ that developed at the top of a mantle diapir in the Oman ophiolite. The lowermost 280 m have a reactional origin: olivine and Cr-spinel record the complex percolation and interaction history between mantle peridotite and MORB. In the uppermost 50 m, chemical trends become consistent with a cumulus origin of the dunite, olivine crystallization being a prelude to the crystallization of the overlying gabbros. The DTZ develops largely in response to melt-rock reaction, consistent with the “reactive filter” hypothesis, but the proportion of cumulate dunite is high enough to require parent melts with a significantly higher Mg content than the most primitive MORB erupted on the seafloor.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.