Lake-water Mg:Ca responds to endogenesis of carbonate minerals, providing a valuable indicator of paleosalinity when water-column cation ratios are preserved in calcareous lake sediments. Typically Mg:Ca and total dissolved solids (TDS) correlate positively over a broad range of ionic compositions where calcium carbonate precipitation occurs. However, in groundwater-fed lakes where inflow solutes are dominated by HCO3, Ca2+, and Mg2+ ions, and concentration of conservative solutes is limited by outflow, CaCO3 formation and depletion of major source-water ions results in a negative correlation between Mg:Ca and TDS at low lake salinity. This relationship is promoted by high pCO2 of inflowing groundwater, a common characteristic of groundwater-fed lakes such as our field example, a groundwater flow-through lake in western Montana, United States. Equilibrium modeling of our field example shows that evaporative evolution is expected to reverse the slope of the Mg:Ca/TDS relationship at moderately higher lake concentration. Generally, the TDS at the point of Mg:Ca/TDS reversal will depend on the initial concentration of less-reactive ions, and so on the source lithology for groundwater solutes.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.