Abstract
The Archean-Proterozoic transition is characterized by the widespread deposition of organic-rich shale, sedimentary iron formation, glacial diamictite, and marine carbonates recording profound carbon isotope anomalies, but notably lacks bedded evaporites. All deposits reflect environmental changes in oceanic and atmospheric redox states, in part associated with Earth's earliest ice ages. Time-series data for multiple sulfur isotopes from carbonate-associated sulfate as well as sulfides in sediments of the Transvaal Supergroup, South Africa, capture the concomitant buildup of sulfate in the ocean and the loss of atmospheric mass-independent sulfur isotope fractionation. In phase with sulfur is the earliest recorded positive carbon isotope anomaly, convincingly linking these environmental perturbations to the Great Oxidation Event (ca. 2.3 Ga).