Anthropogenic elevation of atmospheric carbon dioxide (pCO2) is making the oceans more acidic, thereby reducing their degree of saturation with respect to calcium carbonate (CaCO3). There is mounting concern over the impact that future CO2-induced reductions in the CaCO3 saturation state of seawater will have on marine organisms that construct their shells and skeletons from this mineral. Here, we present the results of 60 d laboratory experiments in which we investigated the effects of CO2-induced ocean acidification on calcification in 18 benthic marine organisms. Species were selected to span a broad taxonomic range (crustacea, cnidaria, echinoidea, rhodophyta, chlorophyta, gastropoda, bivalvia, annelida) and included organisms producing aragonite, low-Mg calcite, and high-Mg calcite forms of CaCO3. We show that 10 of the 18 species studied exhibited reduced rates of net calcification and, in some cases, net dissolution under elevated pCO2. However, in seven species, net calcification increased under the intermediate and/or highest levels of pCO2, and one species showed no response at all. These varied responses may reflect differences amongst organisms in their ability to regulate pH at the site of calcification, in the extent to which their outer shell layer is protected by an organic covering, in the solubility of their shell or skeletal mineral, and in the extent to which they utilize photosynthesis. Whatever the specific mechanism(s) involved, our results suggest that the impact of elevated atmospheric pCO2 on marine calcification is more varied than previously thought.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.