Abstract
Despite the Burgess Shale's (British Columbia, Canada) paleobiological importance, there is little consensus regarding its taphonomy. Its organic fossils are preserved as compressions associated with phyllosilicate films (“clay templates”). Debate focuses on whether these templates were fundamental in exceptional preservation or if they formed in metamorphism, meaning that it is important to establish the timing of their formation relative to decay. An early diagenetic origin has been proposed based on anatomy-specific variations in their composition, purportedly reflecting contrasts in decay. However, we demonstrate that these films bear a remarkable similarity to those that occur on organic fossils in graptolitic mudrocks and form as a normal product of low-grade metamorphism. Such phyllosilicates may also occur within voids created by volume loss in maturation, a process that may have aided their formation. In bedding-plane assemblages from graptolitic mudrocks, different taxa are associated with distinct phyllosilicates. This likely reflects stepwise maturation of their constituent kerogens in an evolving hydrothermal fluid, with different phyllosilicates forming as each taxon progressively underwent maturation. These observations provide an analogue for the distribution and composition of phyllosilicates on Burgess Shale fossils, which we interpret as reflecting variations in the maturation of their constituent tissues. Thus, their clay templates seem unremarkable, forming too late to account for exceptional preservation.