Trace-element and isotopic compositions of fossilized shark teeth sampled from Miocene marine sediments of the north Alpine Molasse Basin, the Vienna Basin, and the Pannonian Basin generally show evidence of formation in a marine environment under conditions geochemically equivalent to the open ocean. In contrast, two of eight shark teeth from the Swiss Upper Marine Molasse locality of La Molière have extremely low δ18O values (10.3‰ and 11.3‰) and low 87Sr/86Sr ratios (0.707840 and 0.707812) compared to other teeth from this locality (21.1‰–22.4‰ and 0.708421–0.708630). The rare earth element (REE) abundances and patterns from La Molière not only differ between dentine and enameloid of the same tooth, but also between different teeth, supporting variable conditions of diagenesis at this site. However, the REE patterns of enameloid from the “exotic” teeth analyzed for O and Sr isotopic compositions are similar to those of teeth that have O and Sr isotopic compositions typical of a marine setting at this site. Collectively, this suggests that the two “exotic” teeth were formed while the sharks frequented a freshwater environment with very low 18O-content and Sr isotopic composition controlled by Mesozoic calcareous rocks. This is consistent with a paleogeography of high-elevation (∼2300 m) Miocene Alps adjacent to a marginal sea.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.