Absolute chronology of magma differentiation processes has been a long-desired goal, given its importance in understanding magma chamber dynamics and its connection to a fundamental understanding of the style and frequency of volcanic eruptions. Broad estimates of the duration of magma differentiation and overall crustal residence times have been made based on a variety of indirect approaches, such as physical models of magma chamber cooling, rates of crystal growth and settling, and long-lived radiogenic isotopes. In contrast, combined 231Pa-235U data may provide a robust measure of the time scale of magma differentiation. Based on 231Pa-235U, 230Th-238U and 226Ra-230Th data from Taal volcano, Luzon Arc, Philippine Archipelago, we show that 231Pa-235U data may provide a robust direct measure of the time scale of magma differentiation. A closed-system magma fractionation model gives a 231Pa-235U differentiation time scale in the range of 30 k.y., while the 226Ra-230Th time scale is considerably younger. The time scales are reconciled if we consider either fluid-mixing or magma-mixing models. The fluid-mixing model gives a time scale of differentiation similar to the 231Pa-235U closed-system time scale and is supported by the 230Th-238U data. The magma-mixing model gives a considerably longer time, in the range of 55 k.y. The combined observations support the robustness of the 231Pa-235U chronology, indicating a differentiation time scale in the range of 30 k.y., although this time scale for other volcanoes may vary depending on size and thermal state of the magma chamber. The 226Ra-230Th closed-system model ages, which yield much younger estimates for magma differentiation, are not likely to reflect time scales of magma differentiation.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.