We present an analysis of fault hydraulic architecture, based on >700 spatially distributed ground and geothermal spring temperature measurements taken in an active fault zone. Geostatistical simulations were used to extrapolate the measured data over an 800 × 100 m area and develop a high-resolution image of temperatures in the fault. On the basis of the modeled temperatures, a simple analytical model of convective heat transport was used to infer a probability distribution function for hydraulic conductivities in a two-dimensional plane parallel to the land surface, and the partitioning of flow between flow paths of different conductivities was calculated as a fraction of the total flux. The analysis demonstrates the existence of spatially discrete, high-permeability flow paths within the predominantly lower-permeability fault materials. Although the existence of fast-flow paths in faults has been hypothesized for >10 yr, their prevalence and contribution to the total flow of fluid in a fault zone are debated. On the basis of our findings, we conclude that the flux transmitted by an individual fast-flow path is significantly greater than that of an average flow path, but the total flux transported in fast-flow paths is a negligible fraction of the total flux transmitted by the fault.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.