A large number of mound-shaped structures that originated from mud extrusions is present along the convergent continental margin off Costa Rica and Nicaragua. Active fluid venting is indicated by the existence of CH4- and H2S-rich pore fluids as well as associated benthic fauna and authigenic carbonates. End-member fluid samples from all mounds are significantly depleted in dissolved Cl and other major elements, suggesting a general process of freshwater addition and thus a common source of the fluids. Our data clearly rule out dilution by gas hydrate dissociation as a dominant source of the freshwater. Enrichments of the fluids in B (up to 2 mmol/L) and inversely correlated δ18O vs. δD values point to clay-mineral dehydration as the cause for these anomalies. Calculations assuming a δ18O vs. δD equilibrium between the pore fluid and clay minerals at depth of formation indicate temperatures of dehydration between 85 and 130 °C. This temperature range is in agreement with the B enrichments and the presence of thermogenically formed CH4. Because temperatures above 50 °C are not reached within the sediment cover of the upper plate, the fluids most likely form within the subducted sediments and flow upward along deep-seated faults from ≥12 km depth. Mound-related fluid expulsion may contribute significantly to the recycling of mineral-bound water.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.