Abstract
Four major storms that triggered debris flows in the Virginia–West Virginia Appalachians provide new insights into the role of high-magnitude, low-frequency floods in long-term denudation and landscape evolution in mountainous terrain. Storm denudation in the Blue Ridge Mountain drainage basins is approximately an order of magnitude greater compared to basins located in the mountains of the Valley and Ridge province. This difference is probably the result of higher storm rainfall from the Blue Ridge storms. Radiocarbon dating of debris-flow deposits in the Blue Ridge indicates a debris-flow return interval of not more than 2–4 k.y. in mountainous river basins. This finding, combined with measurements of basin denudation, suggests that approximately half of the long-term denudation from mechanical load occurs episodically by debris-flow processes. Although floods of moderate magnitude are largely responsible for mobilizing sediment in low-gradient streams, our data suggest that high-magnitude, low-frequency events are the most significant component in delivering coarse-grained regolith from mountainous hollows and channels to the lowland floodplains.