The oxygen isotopic composition of conodont apatite from two Frasnian-Famennian boundary sections was measured in order to reconstruct variations in marine paleotemperatures during the late Frasnian mass-extinction event. The measured conodont apatite δ18O values reveal two positive excursions with maximum amplitudes of +1‰ to +1.5‰ that parallel positive excursions in the carbonate carbon isotopic composition. The +3‰ excursions in carbonate δ13C have been interpreted as consequences of enhanced organic carbon burial rate resulting in a decrease in atmospheric CO2 concentration. Climatic cooling as a potential consequence of lower atmospheric CO2 concentration is confirmed by the conodont apatite δ18O records, which translate into cooling of low-latitude surface waters by 5–7 °C. Repeated cooling of the low latitudes during the late Frasnian had a severe impact on the tropical shallow-water faunas that were probably adapted to warm surface-water temperatures and severely affected during the late Frasnian crisis. These prominent variations in ocean-water temperature were stressful to the tropical shallow-water fauna and potentially culminated in low origination rates of new species, one of the major factors of the decline in diversity during the latest Frasnian.

You do not have access to this content, please speak to your institutional administrator if you feel you should have access.