Abstract
Regional quartz-vein formation and the fluxes, flow paths, and sources of metamorphic fluids were investigated in the Mesozoic accretionary prism of New Zealand by using a new chemical mass-balance analysis of outcrops. Samples were collected at meter or submeter intervals along outcrop-length traverses and combined to obtain average chemical compositions of whole outcrops. Mass-balance analysis used Zr as an immobile reference frame and as a monitor of sedimentary sorting processes. SiO2-Zr systematics produced by sedimentary processes differ greatly from those caused by metasomatic mass transfer of silica, allowing evaluation of vein-formation mechanisms. Relatively undeformed metasedimentary outcrops of low metamorphic grade (mostly prehnite-pumpellyite facies) are nearly unveined and characterized by sedimentary compositional trends. More deformed outcrops of higher metamorphic grade (mostly greenschist facies) contain 10–30 vol% quartz veins. These outcrops underwent mass addition of externally derived silica into quartz veins, accompanied by addition of Na and removal of K and W. Average silica additions suggest a time-integrated fluid flux of ∼104–105