Abstract
Accreted slivers of continental margins are common in the geologic record, but the processes that lead to their formation are poorly understood. We observe an association of plume-related microcontinent isolation and subsequent long-term asymmetries in oceanic crustal accretion based on four recent examples: the Seychelles in the Indian Ocean, Jan Mayen in the Norwegian-Greenland Sea, and the East Tasman Plateau and the Gilbert Seamount Complex in the Tasman Sea. These microcontinents formed by rerifting of a young continental margin (<25 m.y. old) in the vicinity of a mantle-plume stem, followed by asymmetric seafloor spreading. Two-dimensional numerical stochastic basin modeling suggests that a yield-strength minimum along the landward edge of a rifted margin, thermally enhanced by heating from a mantle plume, may cause a spreading ridge to jump onto this zone of weakness. This action isolates a passive-margin segment. The association of large igneous provinces and microcontinents should be useful for identifying similar events in the geological record.