A long-lasting Cenozoic record (∼50 m.y.) of alkaline igneous rocks characterizes northern Victoria Land, Antarctica. Landscape analysis allows distinction between older volcanic and intrusive rocks with well-developed alpine topography sculptured by wet-based glaciers, and younger volcanic cones lacking these features. Many K-Ar and Rb-Sr dates testify that the erosion that formed the alpine landscape ceased between ca. 8.2 and 7.5 Ma. Since ca. 8 Ma, morphological evolution has been driven by cold-based glaciers; warm-based glaciers were no longer active. That this change affected a 300-km-long coastal area suggests a persistent cause of global significance. Glacier dynamics control landscape shaping as a function of ice thickness and temperature, which are driven by climatic conditions. In this view, a significant climatic change occurred in northern Victoria Land between 8.2 and 7.5 Ma. The perfectly preserved serrated alpine ridges, with their delicate spires, testify that no warm-based ice sheets overrode the region after 7.5 Ma and that polar conditions held sway in the Pliocene and Pleistocene Epochs.

This content is PDF only. Please click on the PDF icon to access.

First Page Preview

First page PDF preview
You do not have access to this content, please speak to your institutional administrator if you feel you should have access.